Accuracy of Bias Measurements from 3-point Galaxy Correlations

Kai Hoffmann

collaborators: Julien Bel, Enrique Gaztañaga

arXiv: 1607.01024, 1503.00313, 1504.02074, 1403.1259

growth of matter fluctuations

matter fluctuations

 $\delta(x) \equiv (\rho(x) - \overline{\rho})/\overline{\rho}$

z = 1.5

z = 0.0

MICE Grand Challenge simulation

growth depends on cosmology

matter fluctuations

$$\delta(x) \equiv (\rho(x) - \overline{\rho})/\overline{\rho}$$

linear growth factor

$$D(z) \simeq \delta_m(z) / \delta_m(z_0)$$

(large scale approximation)

growth sensitive to:

- expansion
- gravity
- matter density
- particle characteristics

two-point correlation depends on growth

two-point correlation (2pc)

$$\xi(r_{12}) \equiv \langle \delta_1 \delta_2 \rangle(r_{12})$$

linear growth factor

$$D(z) \simeq \delta_m(z) / \delta_m(z_0)$$

(large scale approximation)

- study in 3D config. space
- ξ is isotropic

cosmology with large-scale structure

cosmology with large-scale structure

MICE Grand Challenge simulation

MareNostrum super computer

- 4096³ (7 10¹⁰) particles
- particle mass = $3 \ 10^{10}$ Msun/h
- simulation box (3 Gpc/h)³
- ΛCDM cosmology:

 $\Omega_m = 0.25, \Omega_\Lambda = 0.75 \Omega_b = 0.044, \sigma_8 = 0.8 n_s = 0.95, h = 0.7$

galaxies trace matter density field

matter density

galaxy density

friends-of friends halo detection:

halo mass samples

sample	mass range [10 ¹² M _{sun} /h]
MO	0.58 - 2.32
M1	2.32 - 9.26
M2	9.26 - 100
M3	>100

galaxies bias model

matter density

galaxy density

Fry & Gaztanaga (1993)

local quadratic bias model $\delta_{z} \simeq b_{1} \left\{ \delta_{m} + (c_{2}/2) (\delta_{m}^{2} - \langle \delta_{m}^{2} \rangle) \right\}$

$$\delta_g \simeq b_1 \left[\delta_m + (c_2/2) (\delta_m^2 - \langle \delta_m^2 \rangle) \right]$$

- *b*₁: linear bias parameter
- c₂: quadratic bias parameter

assumption: δ_m determines δ_g

galaxies bias model

matter density

galaxy density

 $\infty^{\circ\circ}$

Fry & Gaztanaga (1993)

local quadratic bias model

$$\delta_g \simeq b_1 \left[\delta_m + (c_2/2) (\delta_m^2 - \langle \delta_m^2 \rangle) \right]$$

+ E residual from

- stochasticity (e.g. Dekel, Lahav 1999)
- "non-local" contributions (Chan 2012, Baldauf 2012)

bias in galaxy 2-point correlations

growth – bias degeneracy

matter (theory)

galaxies (observations)

z = 0.0

z = 1.0

linear growth

$$D_0(z) = \sqrt{\frac{\xi_m(z)}{\xi_m(0)}}$$

growth – bias degeneracy

matter (theory)

galaxies (observations)

 $\xi_{g}^{0} \simeq b_{1}^{0} \xi_{m}^{0}$. M0 halos $100 \text{ h}^{-1} \text{Mpc}$

z = 0.0

z = 1.0

linear growth

$$D_{0}(z) = \sqrt{\frac{\xi_{m}(z)}{\xi_{m}(0)}} = \frac{b(0)}{b(z)} \sqrt{\frac{\xi_{g}(z)}{\xi_{g}(0)}}$$

growth – bias degeneracy

matter (theory)

galaxies (observations)

z = 0.0

z = 1.0

growth-bias degeneracy

reduced 3-point correlation:

$$Q \equiv \frac{\langle \delta_1 \delta_2 \delta_3 \rangle (r_{12}, r_{13}, \alpha)}{\langle \delta_1 \delta_2 \rangle \langle \delta_1 \delta_3 \rangle + 2 \text{ perm.}}$$

probes shape of LSS

reduced 3-point correlation:

$$Q \equiv \frac{\langle \delta_1 \delta_2 \delta_3 \rangle (r_{12}, r_{13}, \alpha)}{\langle \delta_1 \delta_2 \rangle \langle \delta_1 \delta_3 \rangle + 2 \text{ perm.}}$$

- probes shape of LSS
- independent of redshift

reduced 3-point correlation:

$$Q \equiv \frac{\langle \delta_1 \delta_2 \delta_3 \rangle (r_{12}, r_{13}, \alpha)}{\langle \delta_1 \delta_2 \rangle \langle \delta_1 \delta_3 \rangle + 2 \text{ perm.}}$$

- probes shape of LSS
- independent of redshift
- depends on bias

- large scale approximation
- based on local bias model

reduced 3-point correlation:

$$Q \equiv \frac{\langle \delta_1 \delta_2 \delta_3 \rangle (r_{12}, r_{13}, \alpha)}{\langle \delta_1 \delta_2 \rangle \langle \delta_1 \delta_3 \rangle + 2 \text{ perm.}}$$

- probes shape of LSS
- independent of redshift
- depends on bias

$$\begin{array}{c}
 \delta_{3} \\
 \delta_{3} \\
 r_{12} \\
 r_{12} \\
 r_{13} \\
 \delta_{1} \\
 100 h^{-1} Mpc
\end{array}$$

growth - bias degeneracy broken with Q

 b_{ξ}

condition:

$$Q_g \simeq \frac{1}{b_1} (Q_m + c_2)$$

- large scale approximation
- based on local bias model

bias from Q ~30% too high

bias from ξ (lines)

• good estimate of linear bias

bias from $\boldsymbol{Q}~(\text{symbols})$

- ~30 % overestimation
- overestimation similar for different halo mass samples and redshifts
- overestimation appears also very large scales, i.e. Q (36,72)

bias from Q ~30% too high

• missing higher-order terms in Q_g? (Pollack, Smith & Porciani, 2012)

Why bias from

Q too high?

• non-local bias ? (Chan, Scoccimarro & Sheth, 2012 Baldauf et al. 2012)

non-local bias

local quadratic bias model:

$$\delta_g \simeq b_1 \delta_m + (b_2/2) (\delta_m^2 - \langle \delta_m^2 \rangle)$$

non-local bias

non-local quadratic bias model:

$$\delta_{g} \simeq b_{1} \delta_{m} + (b_{2}/2) (\delta_{m}^{2} - \langle \delta_{m}^{2} \rangle)$$
$$+ \chi_{2} G_{2} (\Phi_{v}) - \langle \delta_{m}^{2} \rangle - \langle \delta_{m$$

\checkmark non-local contributions

$$G_2(\Phi_v) = (\nabla_{ij} \Phi_v)^2 - (\nabla^2 \Phi_v)^2$$

Chan, Scoccimarro & Sheth (2012) Baldauf et al. 2012)

velocity potential:
$$\Phi_v$$

non-local bias:
$$\gamma_2 = g_2 b_1/2$$

non-local quadratic bias model

$$\delta_{g} \simeq b_{1} \delta_{m} + (b_{2}/2) (\delta_{m}^{2} - \langle \delta_{m}^{2} \rangle)$$
$$+ \gamma_{2} G_{2}(\Phi_{v})$$

Q auto: galaxy-galaxy-galaxy

$$Q_{g} \simeq \frac{1}{b_{1}} (Q_{m} + [c_{2} + g_{2}Q_{nloc}])$$

 \checkmark non-local contributions

$$G_2(\Phi_v) = (\nabla_{ij} \Phi_v)^2 - (\nabla^2 \Phi_v)^2$$

Chan, Scoccimarro & Sheth (2012) Baldauf et al. 2012)

velocity potential: Φ_v

non-local bias: $\gamma_2 = g_2 b_1/2$

non-local quadratic bias model:

$$\delta_{g} \simeq b_{1} \delta_{m} + (b_{2}/2) (\delta_{m}^{2} - \langle \delta_{m}^{2} \rangle)$$
$$+ \gamma_{2} G_{2}(\Phi_{v}) - \langle \delta_{m}^{2} \rangle - \langle \delta_{m}$$

Q auto: galaxy-galaxy-galaxy

$$Q_{g} \simeq \frac{1}{b_{1}} (Q_{m} + [c_{2} + g_{2}Q_{nloc}])$$

L non-local contributions

Q cross: galaxy-matter-matter

 $Q^{x} \simeq \frac{1}{b_{1}} (Q_{m} + \frac{1}{3} [c_{2} + g_{2}Q_{nloc}])$

Q auto: galaxy-galaxy-galaxy

 $Q_g \simeq \frac{1}{b_1} (Q_m + [c_2 + g_2 Q_{nloc}])$

non-local contributions

Q cross: galaxy-matter-matter $Q^{x} \simeq \frac{1}{b_{1}} \left(Q_{m} + \frac{1}{3} \left[c_{2} + g_{2} Q_{nloc} \right] \right)$

new linear bias estimator

Q auto – 3 Q cross:

 $b_1 = -2Q_m/(Q_h - 3Q^x)$

- independent of quadratic and non-local contributions ($c_2 + g_2 Q_{nloc}$)
- excellent match with "true" b_1 from ξ
- possible application in galaxy-lensing cross-correlation

new linear bias estimator

Q auto – 3 Q cross:

 $b_1 = -2Q_m/(Q_h - 3Q^x)$

- non-local contributions $(c_2 + g_2 Q_{nloc})$
 - excellent match with "true" b_1 from ξ
 - possible application in galaxy-lensing cross-correlation

independent of quadratic and

Q auto: galaxy-galaxy-galaxy

 $Q_{g} \simeq \frac{1}{b_{1}} (Q_{m} + [c_{2} + g_{2}Q_{nloc}])$

non-local contributions

Q cross: galaxy-matter-matter $Q^{x} \simeq \frac{1}{b_{1}} (Q_{m} + \frac{1}{3} [c_{2} + g_{2}Q_{nloc}))$

Q auto – Q cross: $b_{\xi}(3/2)(Q_h - Q^x) = c_2 + g_2 Q_{nloc}$

- independent of Q_m
- depends on triangle configuration
 - → local quadratic bias model ($g_2 = 0$) fails
- agreement with Q_{nloc} prediction
- can be used to measure c₂ and g₂

Bel, Hoffmann, Gaztanaga (2015, arXiv:1504.02074)

symbols:

- measurements from $\Delta Q = Q Q^{X}$ lines:
- fit to measurements
- local Lagrangian prediction
- fit from Chan, Scoccimarro, Sheth (2012)

strong scale dependence of non-local bias $\gamma_2 = g_2 b_1/2$

 possibly caused by higher-order terms (local and non-local)

linear b_1 - γ_2 relation at r > 35 Mpc/h

close to local Lagrangian prediction

differences to Chan et al. 2012

- config. vs. Fourier space
- different measurement (B vs. Q)
- different simulation

3pc in Fourier and config. space

measurement $Q_{h} \simeq \frac{1}{b_{1}} (Q_{m} + [c_{2} + g_{2}Q_{nloc}])$ model

- Qm & Qnloc from leading order perturbation theory
- b1, c2, g2 from Fourier space measurements using the same simulations (Chan, Sheth, Scoccimarro, 2012)

measurements better described by non-local model
convergence between 30-40 Mpc/h

*Hoffmann, Gaztanaga, Scoccimarro, Crocce in prep.

linear bias comparison

Hoffmann, Bel, Gaztanaga 2016, arXiv:1607.01024

non-linear bias comparison

Hoffmann, Bel, Gaztanaga 2016, arXiv:1607.01024

universal relation between b1, b2, b3

Hoffmann, Bel, Gaztanaga (2015, 2016, arXiv:1503.00313, 1607.01024)

Conclusions

- constraints on cosmological models limited by growth-bias degeneracy
- growth-bias degeneracy broken with 3pc
- 3pc is affected by non-local contributions to bias function
- agreement with Fourier space results only at > 40 Mpc/h
- accurate bias from combining 3pc & 3pcc
- nearly universal relation between b2(b1) and b3(b1)